Chapter
2Quiz
For use after Section 2.3

- **1.** Identify the hypothesis and the conclusion. Then rewrite the conditional statement in if-then form.
 - All 26° angles are acute angles.
- **2.** Write the negation of each statement.
 - **a.** The shirt is purple.
 - **b.** The ball is blue.
 - **c.** The tie is red.
- **3.** Hypothesis p is true and conclusion q is false. Determine whether the statement $\sim q \rightarrow \sim p$ is *true* or *false*.
- **4.** Write a definition of *conjecture*.
- 5. Find a counterexample to show that the conjecture is false.

All numbers ending in 3 are divisible by 3.

6. Sketch a diagram of a plane *P* containing \overrightarrow{AB} .

- 7. Describe the pattern. Then write the next number.
 - 1, 2, 3, 6, 11, 20, 37, 68, 125, 230, 423, . . .

Chapter
2Quiz
For use after Section 2.6

1. Name the property of equality that the statement illustrates.

$$AB - 6 = AB - 6$$

2. In the diagram, $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{BC}$. Find BC.

3. Complete the two-column proof of the Vertical Angles Congruence Theorem.

Given $\angle 1$ and $\angle 3$ are vertical angles. Prove $\angle 1 \cong \angle 3$

STATEMENTS	REASONS
1. $\angle 1$ and $\angle 3$ are vertical angles.	1. Given
2. $\angle 1$ and $\angle 2$ are a linear pair. $\angle 2$ and $\angle 3$ are a linear pair.	2.
 3. ∠1 and ∠2 are supplementary. ∠2 and ∠3 are supplementary. 	3.
4. ∠1 ≅ ∠3	4. Congruent Supplements Theorem

4. Solve the formula $A = 2\pi rh + 2\pi r^2$ for *h*.